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A Markov jump process in which a massive labeled particle undergoes random 
elastic collisions with a thermal bath is investigated. It is found that the behavior 
of the labeled particle can be divided into three distinct regimes depending on 
whether its velocity is (1) much less than, (2) on the order of, or (3) much greater 
than the mean speed of a bath particle. In each regime the jump process can be 
approximated by a particular continuous-path diffusion process. The first case 
corresponds to the Ornstein-Uhlenbeck process, while each of the latter can be 
modeled by a deterministic process with a nonlinear Langevin equation. In 
addition, in cases (2) and (3), the scaled deviation from the mean velocity can be 
modeled by a nonstationary diffusion. By scaling the time and letting the mass 
of the labeled particle become large, a continuous-path diffusion is constructed 
which approximates the jump process in each regime. Analytic solutions for the 
transition probability density are provided in each case, and numerical compari- 
sons are made between the mean and variance of the diffusions and the original 
jump process. 

KEY WORDS: Brownian motion; diffusion; nonlinear fluctuations; Rayleigh 
piston. 

1. INTRODUCTION 

C o n s i d e r  a l abe l ed  pa r t i c l e  of  mass  M sub jec t  to r a n d o m ,  elast ic  col l i s ions  

wi th  a o n e - d i m e n s i o n a l  b a t h  of  par t ic les ,  e a c h  of  mass  m. This  sys tem was  

first  i nves t i ga t ed  by  L o r d  R a y l e i g h  in 1891 a n d  has  b e c o m e  k n o w n  as the  

" R a y l e i g h  p i s t on . "  S ince  then,  m a n y  o the r s  h a v e  a lso  s tud ied  this s y s t e m )  

In  this p a p e r  we  shal l  be  in t e re s t ed  in m o d e l i n g  the  ve loc i ty  of  the  l abe l ed  

pa r t i c l e  by  a d i f fus ion .  

I physics Department, Texas Christian University, Fort Worth, Texas 76129. 
2Mathematics Department, Texas Christian University, Fort Worth, Texas 76129. 
3 For a review see Ref. 1. 
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Under the assumption of elastic collisions, the velocity of the labeled 
particle (Rayleigh piston) follows a stochastic jump process. It is not 
feasible to obtain the probability density function (p.d.f.) of velocities at 
some future time in closed form by solving an associated master equation. 
However, as m / M ~  0 the size of the jumps decreases and an approxima- 
tion by a diffusion process is possible. For a stationary velocity distribution 
of the bath particles, it is found that the behavior of the Rayleigh piston 
can be separated into three distinct regimes corresponding to a velocity (1) 
much less than, (2) on the order of, or (3) much greater than the root-mean- 
square (rms) velocity of a bath particle. In each regime the jump process 
can be approximated by a diffusion. The first case corresponds to the 
Ornstein-Uhlenbeck process obtained as a solution of the standard linear 
Langevin equation. In each of the other two cases, the velocity can be 
modeled by a deterministic process. Here, by a suitable scaling of the 
deviation of the velocity from its deterministic limit, a related diffusion 
process is constructed which yields the distribution of velocities about the 
mean. 

In Section 2 we describe in detail the collision process, the master 
equation, and the infinitesimal moments that will be needed to obtain 
diffusion approximations for the velocity. We also introduce the related 
process generated by the scaled deviation of the velocity from its mean, and 
construct the associated infinitesimal moments. Section 3 is devoted to 
rigorously constructing the diffusions discussed above by subjecting the 
original jump process to specific limits. In Section 4, the nonstationary 
Fokker-Planck equations which govern the diffusions obtained in Section 3 
are formally solved. A diffusion approximation valid for high velocities is 
explicitly solved. In addition comparisons are made between the diffusion 
approximations and numerical solutions of the master equation for differ- 
ent values of m/M for the specific case where the bath particles have a 
Maxwell-Boltzmann velocity distribution. 

2. THE JUMP PROCESS 

Assume that a labeled particle (piston) of mass M and velocity v is 
moving in a one-dimensional bath of particles of mass m. Collisions 
between the piston and the bath particles are elastic. After each collision 
the bath particles are given a new distribution, which evolves until the next 
collision. The distribution of their positions will be taken as Poisson with 
density p, and their velocities are distributed independently of their posi- 
tions. Then, by construction, there can be no recollisions. The above 
assumptions are sufficient to guarantee that the collision times between the 
Rayleigh piston and the bath particles form a Markov (Poisson) process. 
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Let fb be the singlet distribution of velocities and positions of the bath 
particles. Since velocity and position are independent, we shall only use fb 
with one argument, u, denoting velocity. Thus, fb(U)/p is the p.d.f, of the 
velocity of a given bath particle. 

If u,v represent velocities of a bath particle and the piston, respec- 
tively, and u', v' are these velocities after an elastic collision, then 

v ' =  v + 2 (u - v)  
(1) 

u' = u + 2 a ( v -  u ) M / m  

where a is defined as m/(m + M). 
Given that the piston has velocity v, the probability that there will be a 

collision in time (t, t + dt) with a bath particle with velocity in the range 
(u, u + du) is 

lu - vlfb(u)dudt (2) 

The probability of more than one collision in time dt is o(dt2). When 
writing expression (2) we are implicitly assuming that we are dealing with a 
Markov process since the effects of previous collisions are not taken into 
account. As previously mentioned, the collision times form a Poisson 
process with a collision rate, )t, that depends on the velocity of the piston: 

X(v) = f l u -  vlf~(u)du (3) 

Let P(v, t) be the density function of the velocity of the piston at time 
t. From the above assumptions, this velocity will be a Markov process and 
P(v, t) will satisfy the so-called master equation: 

f l v -  u][ e(v' ,  t)fb(U' ) -- e(v,  t)fb(u) ] du (4) 
OP 
3t 

where v' and u' are given in (1). The goal is to obtain P(v, t) in terms offb, 
but this will not be possible using (4) directly. Instead we introduce the 
infinitesimal moments of the process: 

K,(v) = lim ( ( A v ) ' l v ) / A t  (5) 
A t --->0 \ "  " 

where ( . - .  Iv) represents the conditional expectation given that the 
velocity of the piston is v. Av represents the change in the velocity of the 
piston during an interval of length At. 

Equation (5) can be written as 

K,(v) = 2}m0 ~tt f (av ) 'W(av ,  Atlv)d(Av) (6) 

where W(Av, At I v) is the p.d.f, of the transition v ~ v + Av during the time 
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interval At. Using (2), Eq. (6) can be expressed as 

= ( 2 ~ ) ~  - vl(u - v)"fb(u)du K,(v) (7) 

Because the velocity of the piston follows a Markov process, P(v, t) 
will satisfy the Chapman-Kolmogorov equation: 

P(v,,  + At) = f e ( v  - ~v, t) W(Av, At ! v - Av) d(Av) (8) 

Expanding the integrand in (8) about v yields 

X (- 1)"(Av)" 0~ 
n=o n! Ov n [P(v,t)W(Av, At]v)l (9) 

Using (6) and (9), Eq. (8) becomes 

0 P _  ~ (--1)  n 0" 
Ot ~ n! Ov ~ [ P(v,t)K.(v) ] (10) 

n = l  

Another series for aP/Ot may be obtained by expanding P(v',t) about 
P(v,t) in Eq. (4): 

OP 1 K/,(v) ~"e(v,t) (11) 

n = l  

where 

-- ( 2 a ) ' f [ u  - vl(u - v)"fb(u')du K;(v) 

\ n + 2  
=(-1)"+l MM+---mm) K~(v) (12) 

Equation (11) frequently occurs in the physics literature. (2'3) The terms are 
grouped by the order of the derivative of P, rather than powers of a. 

As m / M ~ O  the velocity of the piston becomes deterministic. To 
investigate its stochastic component we construct a new process 4 with a 
scaled variance, 

v(t)  -- ~ (0  
~(t) - (13) 

where ~(t) is the mean velocity at time t. If we observe the change in the 
process over a time At then 

A~ = (Av - A~)/~/-~- (14) 

4This scaling was first introduced in a more general context by Van Kampen3 4) 
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By the binomial theorem 
n 

n  v"-k k (15)  

If we let R. denote the nth infinitesimal moment of the ~ process, 

R. = lim ((A~)"I~)/At (16) 
At--~O ~ "  " 

then (16) can be expressed using (15) and (6): 

R n=  lim a-n~2 ~ (k)  f at-->0 A t  (--Av) k (Av)n-kW(Av, AtIv)d(Av) (17) 
k = O  

But since A~ is of the order At, as At--> 0 w e  obtain 

- 7  ~ -  , n = l  
R. = w (18)  

-"/2K.(~ + ~/-d~), n > 1 

We shall return to this process in Section 3 for a full discussion of its 
properties. 

3. DIFFUSION MODELS 

In the previous section we described the behavior of the velocity of the 
piston as a jump process. To determine the distribution of velocity at a 
future time we must solve the master equation (4). However, this is only 
possible numerically. Since we are primarily interested in the case M >> m, 
we shall try approximating the jump process with a continuous path 
process, i.e., a Markov diffusion. The probability density of such a process 
satisfies the Fokker-Planck equation: 

~P a [b(v,t)P(v,t)]+ 1 0___~ 2 [a(v,t)P(v,t)] (19) 
at = -  a--~ 2 av 2 

where b(v, t) and a(v, t) are, respectively, the first and second infinitesimal 
moments of the continuous process. An arbitrary way to determine these 
functions from the jump process is to truncate the series in (10). This leads 
to the choice b(v,t)= Kl(V ) and a(v,t)= K2(v ) with KI, K 2 given by (7). 
Truncating the series in (11) yields a different choice. Since the diffusion 
approximation will only be valid when m ---> 0 or M ~ oo we would like to 
verify that the terms n/> 3 do indeed vanish while systematically determin- 
ing correct expressions for a and b. Here we examine possible diffusion 
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approximations when M ~  oo. In each case we will indicate how the 
identical process may be obtained by letting m--> O. 

A. v--oh. Let M ~ c r  z = at. If we examine the jump process 
simply by taking the limit M ~  m we obtain free motion for the piston; the 
collisions have no effect. Hence we introduce the scaled time ~-= at. By 
velocity we still mean dx/dt,  not dx/dr. By choosing -r as our time variable 
we are scaling the observation times so that enough collisions will occur to 
produce measurable changes in the piston's velocity. 

The infinitesimal moments of the scaled velocity process can be 
written in terms of K n given by (7): 

lim ((Av)n]v)/A~ = (1/a)gn(v) (20) 
A r g O  

The limiting velocity process has infinitesimal moments: 

!imo(1//a)Kn(v ) = ( 2flu-vl(u-v)A(u)du, n - -  1 (21) 

O, n> 1 
Therefore, the resulting deterministic velocity process, ~(r is gov- 

erned by the equation 

a~dr - 2 f lu -  el(u - ~)fb(U)du (22) 

Since, from (7), dKl/d~ = - 4 a X  the corresponding ~ process has limiting 
infinitesimal moments 

[ -4~X(~) ,  n = 1 
/ ~(1/~)lL=t4flu--r~l(u--rO2fb(U)du, n = 2  (23) 

(0, n > 2  

The diffusion that corresponds to the limiting ~ process above is 
characterized by a Fokker-Planck equation of the form 

0e  _ O [,~. B(~-)P(~, 'r) ]  + 1 0 2 O': O~ ~ - ~  [A(r)P(~,r)] (24) 

where A and B depend on r through ~. The identical process can be 
obtained by taking m-e0 ,  p--> oo while keeping constant the quantities 
(mo) and 02, the variance of the velocity of a bath particle. 

R. v >> o b. Lot M ~ ~ ,  ~-= at, o b--~ O. The process defined in Sec- 
tion A is useful for  piston velocities v ~ o  b. A related process can be 
constructed which is useful for approximating the jump process when 
v >> % by letting fb ~ pS(U) in (21)-(23). 
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The resulting deterministic velocity process satisfies 

d~ 
- 20~1~1 ( 2 5 )  

dt 

and the p.d.f. P(~, r) is the solution of 

OPor ~ (~P O= - 401~1 )+ 2[~(q')31t0 - ~  e (26) 

This is the diffusion limit of the Rayleigh piston when the bath particles are 
at rest. 5 Explicit solutions for this process are given in the appendix. 
Alternatively, it can be obtained from the jump process by taking m ~ 0, 
0 ~ oe, o b -~ 0 while keeping ( m p )  constant. 

C. v<<o b. Let M ~ m ,  "r = a t ,  w = v / f a .  T h e  favorite model for 
the physical motion of a massive particle in a fluid is the Ornstein- 
Uhlenbeck (OU) process. Although this model cannot be obtained from A 
above because the latter is deterministic, it is a first approximation for A 
when v << o b. [However, note that (24) is the OU process for ~ when ~ = 0.] 

In order to obtain the OU process as a rigorous limit of the Rayleigh 
piston it is necessary to scale the piston's velocity in addition to the time. If 
we define w -- v / , [ d  we obtain the following infinitesimal moments for the 
process w when a -~  0: 

lim lim 1 ( (Aw)nlw)  = lim 1 Kn(wN) a~O A~'~O a~O 

-flW [UlfbdU, n = 1 

= 4 u3]fbdU, n = 2  (27) 

L0, n > 2  

providing that 

fO u fb dU = d,, (28) 

If condition (28) is not satisfied, the first infinitesimal moment diverges and 
the process is not defined. It should be noted that any fb which is stationary 
will also be symmetric in u. 6 

5The associated jump process is examined in Ref. 5. 
6See Ref. 6 for an application of this limit to a Brownian particle interacting with a fluid 
characterized by a nonuniform temperature. 
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The probability distribution for w, P(w, ~-), satisfies the familiar version 
of the Fokker-Planck equation 

3P B 3 (wP)+  1 3 2 - - - P  (29) 3T ~ ~A 3w 2 

where here, in contrast with (24) and (26) 

A =4flu3lf du, B=4flulf du (30) 

are constants independent of r. Alternatively the OU process can be 

obtained by letting m--> 0, p ~ ~ ,  o b ~ ~ while keeping (O~/-m) and (G,/-m) 
constant. 

. THE S O L U T I O N  

In this section we shall solve the F o k k e r - P l a n c k  equation (24). W e  
first change the time variable from ~- (or t) to n: 

n =fo'~B(y)dy (31 / 

Making the change of variable in (24) leads to 

3P(~,n) O D(n) 32p (32) 

where 
D(n) = A ('r)/ B('r) (33) 

In (33), r is considered as a function of n through (31). This is possible 
since B is positive and so (31) has an inverse function l-(n ). 

Following Ricciardi, it is possible to solve (32) by a transformation to a 
Wiener process (71 (see Appendix B). This yields a Gaussian probability 
density with a time-dependent variance: 

P(~,n) - 1 e-,2/2o 2 (34) 

where o 2 is the solution of 

do2/dn  = -202 + O(n ) (35) 

so that 
02 = e - 2n fonD (y) e 2y dy (36) 

From these equations we can obtain the approximate distribution of 
the velocity, rather than ~. Since 

v -- 3 + ~ (37) 
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Fig. 1. Mean velocity vs. scaled time for original jump process (M = 3, 9), diffusion (M 
= ~) ,  and Ornstein-Uhlenbeck process (exponential). 

we conclude that v will have an approximate Gaussian density with mean 
and variance ao 2. This applies to cases A and B discussed in Section 3. 

As a numerical illustration of the degree of approximation resulting 
from the above approach we consider case A with a Maxwell-Boltzmann 
distribution of bath particle velocities having o b = 1 and O = 1. The compu- 
tations are described in the Appendix. In Fig. 1, ~ for the diffusion process 
[from (22)] is plotted versus scaled time for the case v 0 = 5. It  is compared 
with (v(~-)] v o = 5> for the original jump process (with masses M = 3, 9) as 
well as the Ornstein-Uhlenbeck process, for which (v(,r) lVo) is indepen- 
dent of M in scaled time. The relatively slow initial decay of (v(~') t v0> for 
the OU process arises from its failure to account for the rapid rise in 
collision rate with velocity when Ivl ~> oh. In Fig. 2, the variance from (36) 
is compared with the variance from the jump process for the same values of 
M and v 0. In Fig. 3 the dependence of 02 in (36) upon v 0 is illustrated. 
Notice that only when v 0 = 0 do we obtain the exponential increase in the 
variance as expected from the Ornstein-Uhlenbeck theory. If v 0 4 = 0, we 
obtain a sharp increase in the variance followed by a slow decay to its 
!imiting value ( =  1 in Fig. 3). It  is apparent  from Figs. 1 and 2 that the 
actual jump process rapidly approaches the diffusion model as M becomes 
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Scaled variance vs. scaled time for original jump process (M = 3, 9) and diffusion 
(M = oo). 

large. In Fig. 4 the variance is plotted for v 0 -- 5 when the bath is at rest 
(case B) and compared to the variance curve for this initial velocity from 
Fig. 3 for a Maxwel l -Bol tzmann distribution. As anticipated, case (B) 
yields a good approximation to the piston when v >> % ( =  1 here). However,  
in contrast with cases (A) and (C), the piston eventually comes to rest. 

5 .  D I S C U S S I O N  

In general, more than one diffusion can be constructed as the limit of 
a jump process. Each diffusion may approximate the original process in a 
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limited domain. In the case of the Rayleigh piston, the Ornstein- 
Uhlenbeck process is a useful approximation only when the piston velocity 
is much less than the mean speed of a bath particle. 

It is possible to model the piston over its entire domain by a nonsta- 
tionary process, case A, characterized by a linear Langevin equation. The 
Fokker-Planck equation governing this process can be solved by trans- 
forming to a Wiener process. The solution for the transition probability 
density is Gaussian with a time-dependent variance which is related to the 
nonlinear deterministic equation of motion governing the velocity of the 
piston. In contrast to the Ornstein-Uhlenbeck process, this process has a 
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Scaled variance vs. scaled time for a Maxwel l -Boltzmann heat bath (M = oo), and a 
bath of particles at rest (Feller). 

variance which increases rapidly with scaled time, has a single maximum, 
and then approaches its asymptotic limit from above. 

Interesting extensions of the above techniques include Brownian mo- 
tion in three dimensions, Brownian motion in nonuniform baths, (6) and 
non-Markovian dynamical models. (8) 
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APPENDIX 

A. MaxwelI-Boltzmann Bath 

The collision rate for a Maxwell-Boltzmann velocity distribution of 
the bath particles with unit density and variance is 

~(v) = f l u -  v[fb(u)du 

(2~r) 1/2 -,~ -,- ~ -v 

+ v f f e - X 2 / 2 d x ]  

= (2/~r)'/2e -~V2 + v e r f ( v / ~ - )  (38) 

We also require 

=flu-  v[(u - v)~fb(U)du I,(v) 

_ 1 flxlx,e-(X+~)~/2dx (39) (2~) 1/2 J 

But 

f lx[x"e-(X+V)V2dx = -(v+ ~ ) f [xlx"-'e-(X+'~'2/2dx 
Thus, by induction, 

I,,(v) = (-1)"(v + ~-~ )"X(v) (40) 

The deterministic velocity process in Fig. 1 was obtained by numerically 
integrating 

d~ = 2I~(b) (41) 
dr 

The variance of the ~ process (scaled variance) graphed in Fig. 2 (M = oc) 
and Fig. 3 is constructed from A 09 and B0-), where 

A = 4Iffe),  B = 4X(~) (42) 

B. NonstaUonary Fokker-Planck Equation 

The solution of 

OP _ 3 3 2 
(32) 
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is desired subject to the initial condition P(~, 0) = 8(4). Following Ricciardi, 
introduce the functions x and y, 

y = y(~),  x = x(~,~) (43) 

From the condition that the transformation (43) is single valued, x~, Yn > 0 
is required, where the subscripts indicate partial differentiation with respect 
to the variable indicated. Let f be the p.d.f, for the random variable x. It is 
related to P by 

P(~, ~) = f ( x ,  y)x~ (44) 

The prescription is to determine x and y such that f describes a Wiener 
process, 

~ f _  1 O~r (45) 
~y 2 0x 2 

for which the solution is known, 

1 e - x2/2Y (46) 
f =  (2~ry)1/2 

Substitution of (43) into (32) and comparison with (45) yields the following 
set of conditions on x and y: 

(a) yn = Dx~ 

(b) x~ + ~x~ - x~n + �89 D x ~  = 0 

(c) 

yielding 

~x~ + 3 Dx~x~ - x~x n = 0 

From (a) we have 

x = gg(yn/D)'/2+ C,Q/) 

From (b) we have 

d ) ( y n / D  ) , /2= 0 ( yn /D)1 /2_  ( 

y = C2s C 3 

where C 2 and C 3 are constants. 
From (c) we have 

dC, 
- -  O ,  

dn 
C1 = const 
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To satisfy the initial condit ion on P, take C1 = C3 = 0. Because of cancella-  
tion, P is independent  of C2 and the solution of (32) is 

P(~, rl) = [ 1 / o ( 2 r r ) ' / Z ] e  -~z/2~ 

02 = e - Z ~ ( " e : r  aT'  
.10 

C. Bath at Rest 

For  convenience  choose the unit  of length where p = l. The  determin-  
istic velocity process ~ is found  by  integrat ing (25) to obta in  

I)0 
~0") - 1 + 2~-]Vol ( 4 7 )  

with initial velocity Vo. 
The  var iance can be expressed in terms of the scaled time, ra ther  than 

77. F r o m  (31) and  (47) we have 

~/= 2 l n ( v o / ~ )  

Consequently,  

= Vo e - " / 2 ,  D(T1) = v2e - "  (48) 

Using the above  results, (36) can be rewrit ten as 

a z = 41%[3~'( 1 + ~]Vol ) 

(1 + 2~-IVo[) 4 (49) 

For  any  nonzero  Vo, Eq. (49) indicates that  the var iance is a un imoda l  
funct ion of r. The  var iance assumes its m a x i m u m  value of v ~ / 4  at z = 

(~- - 1 ) / 2 1 V o l .  
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